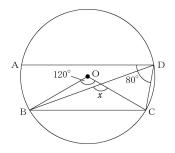
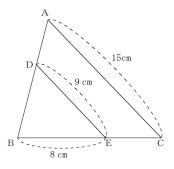
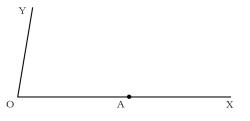

令和6年度前期学力検査 数学 詳解


1

あとの各問いに答えなさい。(20点)


- (1) $-2^2-7\times(-5)$ を計算しなさい。
- (2) (2x+7)-(3x-2) を計算しなさい。
- (3) $\sqrt{75} + \frac{9}{\sqrt{27}}$ を計算しなさい。
- (4) 二次方程式 $(x-2)^2-25=-5(x+3)$ を解きなさい。
- (5) 50以上60未満の整数のうち、素数をすべて求めなさい。
- (6) y はx の一次関数で、そのグラフが点(2,-1) を通り、 $\mathbf{\hat{q}}$ き $\frac{3}{2}$ の直線であるとき、この一次関数の式を求めなさい。
- (7) a=2, $b=-\frac{7}{9}$ のとき, $54ab^2\div 4b\times 2a$ の式の値を求めなさい。
- (8) 右の図のように、半径3cm、∠AOB=90°のおうぎ形OABがある。おうぎ形OABを、直線AOを軸として1回転させてできる立体の表面積を求めなさい。
 ただし、円周率はπとする。

(9) 次の図のように、円〇の周上に 4 点A、B、C、Dがある。 \angle ADC= 80° 、 \angle BOC= 120° 、AD #BCのとき、 \angle xの大きさを求めなさい。



(10) 次の図のように、 \triangle ABCの辺AB上に点D、辺BC上に点Eがある。AC=15cm、 DE=9cm、BE=8cm、AC#DEのとき、ECの長さを求めなさい。

(11) 次の図で、線分OX上に点Aがあり、 \angle XOY=80°であるとき、 \angle OAP=90°、 \angle OPA=50°となる \triangle OAPを1つ、定規とコンパスを用いて作図しなさい。

なお、 作図に用いた線は消さずに残しておきなさい。

解答

(1)
$$-2^2 - 7 \times (-5) = -4 + 35$$

= 31

(2)
$$(2x+7) - (3x-2) = 2x+7-3x+2 = 2x-3x+7+2$$

= $-x+9$

$$\sqrt{75} + \frac{9}{\sqrt{27}} = 5\sqrt{3} + \frac{9\sqrt{27}}{27} = 5\sqrt{3} + \frac{9\times3\sqrt{3}}{27} = 5\sqrt{3} + \frac{27\sqrt{3}}{27} = 5\sqrt{3} + \sqrt{3}$$
$$= 6\sqrt{3}$$

(4)
$$(x-2)^2 - 25 = -5(x+3)$$

 $x^2 - 4x + 4 - 25 = -5x - 15$
 $x^2 + x - 6 = 0$
 $(x+3)(x-2) = 0$
 $x = -3, 2$

(5) 素数 2, 3, 5, 7, 11, 13… に対し, $7^2=49$, $11^2=121$ より 60 未満の素数は 11 までの素数で割り切れない 1 以外の整数である。 2 以外の偶数の素数は無いので, 50 以上 60 未満の整数で残るのは

3 で割り切れるものは 51, 57, 5 で割り切れるものは 55, 7 で割り切れるものは上の中に無く,11 で割り切れるものは 55. 残ったものが素数であるから 53, 59.

(6) 傾きが $\frac{3}{2}$ の一次関数であるから $y=\frac{3}{2}x+b$ と書ける. これが (x,y)=(2,-1) を通ることより

$$-1 = \frac{3}{2} \times 2 + b$$
$$-1 = 3 + b$$
$$b = -4$$

よって
$$y = \frac{3}{2}x - 4$$
.

$$54ab^{2} \div 4b \times 2a = \frac{54ab^{2} \times 2a}{4b}$$
$$= 27a^{2}b$$

$$a=2, \ b=-\frac{7}{9}$$
 のとき

$$27a^{2}b = 27 \times 2^{2} \times \left(-\frac{7}{9}\right) = -3 \times 4 \times 7$$
$$= -84$$

(8) 立体は半径が3 cm の半球になる. 曲面部分の面積は

$$4 \times \pi \times 3^2 \times \frac{1}{2} = 18\pi \text{ cm}^2$$

平面部分の面積は

$$\pi \times 3^2 = 9\pi \text{ cm}^2$$

よって表面積は

$$18\pi + 9\pi = 27\pi \text{ cm}^2$$

(9)
$$\angle OBC = \angle OCB = \frac{1}{2}(180^{\circ} - 120^{\circ})$$

= 30°

弧 BC に対する中心角と円周角の関係より

$$\angle BDC = \frac{1}{2} \angle BOC = \frac{1}{2} \times 120^{\circ} = 60^{\circ}$$

よって

$$\angle ADB = 80^{\circ} - \angle BDC = 80^{\circ} - 60^{\circ} = 20^{\circ}$$

AD // BC より錯角の関係から

$$\angle DBC = \angle ADB = 20^{\circ}$$

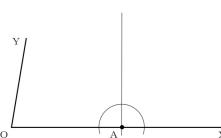
以上より

$$\angle x = 180^{\circ} - (\angle OCB + \angle DBC) = 180^{\circ} - (30^{\circ} + 20^{\circ})$$

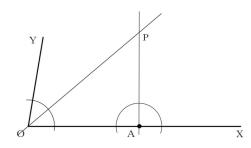
= 130°

$$8:9 = BC:15$$

$$9BC = 120$$


$$BC = \frac{120}{9} = \frac{40}{3}$$

 $EC = BC - BE \$ $\$ $\$


$$EC = \frac{40}{3} - 8 = \frac{40}{3} - \frac{24}{3}$$
$$= \frac{16}{3} \text{ cm}$$

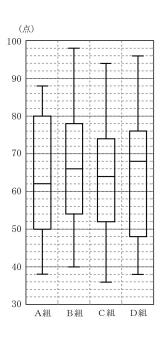
- (ii) $\angle OAP = 90^{\circ}$, $\angle OPA = 50^{\circ}$ のとき $\angle POA = 40^{\circ}$.
- ①: A を通る OX の垂線を作図する.
- ②: $\angle XOY = 80^{\circ}$ であるから $\angle XOY$ の角の二等分線をを作図する.
- ③:①, ②の交点を P とする.

1

(2), (3)

2

右の図は、A組、B組、C組、D組のそれぞれ31人の生徒が受けた、100点満点の数学のテスト結果を、箱ひげ図に表したものである。


このとき、あとの各問いについて、右の箱ひげ 図から読みとり答えなさい。

ただし、得点は整数とする。(6点)

- (1) 中央値が最も大きい組の、中央値を求めなさ
- (2) 四分位範囲が最も小さい組の,第1四分位数を求めなさい。
- (3) 80点以上の生徒の人数が最も多い組はどれか、 次のア〜エから最も適切なものを1つ選び、そ の記号を書きなさい。

ア. A組 **イ**. B組

ウ. C組 **エ**. D組

解答

- (1) 箱ひげ図より D 組で, D 組の中央値は 68 点.
- (2) (四分位範囲) = (第3四分位数) (第1四分位数) で

A 網: 80 - 50 = 30

B網: 78 - 54 = 24

C組: 74 - 52 = 22

D組: 76 - 48 = 28

であるから、C 組の四分位範囲が最も小さく、C 組の第 1 四分位数は 52 点である.

(3) 各組 31 人いるので,第 3 四分位数より上の人は 7 人いる.すなわち,箱ひげ図の箱より上の最大値までの範囲に 7 人入る.

A 組のみ箱の上部が 80 点にかかっていて第 3 四分位数が 80 点なので 80 点以上の生徒が 8 人以上いる. 他の組は 80 点以上は 7 人以下である. したがって, ア. A 組.

3

次の図のように、-3、-2、-1、1、2、3 の数が1つずつ書かれた6 枚のカードがある。このカードをよくきり、同時に2 枚のカードをひくとき、あとの各問いに答えなさい。ただし、どのカードをひくことも同様に確からしいものとする。(4 点)

 $\begin{bmatrix} -3 \\ \end{bmatrix} \begin{bmatrix} -2 \\ \end{bmatrix} \begin{bmatrix} -1 \\ \end{bmatrix} \begin{bmatrix} 1 \\ \end{bmatrix} \begin{bmatrix} 2 \\ \end{bmatrix} \begin{bmatrix} 3 \\ \end{bmatrix}$

- (1) ひいた2枚のカードに書かれた数の積が、正の数となる確率を求めなさい。
- (2) ひいた2枚のカードに書かれた数の和が、その2枚のカードに書かれた数の積より大きくなる確率を求めなさい。

解答

全ての場合の数は

(-3, -2), (-3, -1), (-3, 1), (-3, 2), (-3, 3),

(-2, -1), (-2, 1), (-2, 2), (-2, 3),

(-1, 1), (-1, 2), (-1, 3),

(1, 2), (1, 3),

(2, 3)

の 15 通りある.

(1) 2枚のカードに書かれた数の積が正の数となるのは

(-3, -2), (-3, -1),

(-2, -1),

(1, 2), (1, 3),

(2, 3)

の 6 通り.よって求める確率は $\frac{6}{15}=\frac{2}{5}$.

(2) 2 枚のカードに書かれた数の和がそれらの数の積より大きくなるのは、正の数と負の数のカードの組み合わせと 1 と他の自然数の組合せである。よって

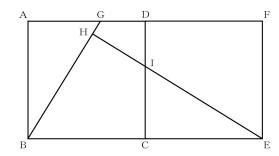
(1, -3), (1, -2), (1, -1),

(2, -3), (2, -2), (2, -1),

(3, -3), (3, -2), (3, -1),

(1, 2), (1, 3)

の 11 通りある. よって求める確率は $\frac{11}{15}$.


4

次の図のように、線分CDが共通である2つの正方形ABCD、DCEFがある。線分AD上に点Gをとり、線分BGをひく。点Eから線分BGに垂線をひき、線分BGとの交点をHとする。また、線分EHと線分CDの交点をIとする。

このとき, あとの各問いに答えなさい。

ただし、点Aは点Fと異なる点、点Gは点A、Dと異なる点とする。

また, 点B, C, Eは同一直線上にある。(6点)

- (1) $\triangle ABG \equiv \triangle CEI$ であることを証明しなさい。
- (2) $AB = 4 \, \text{cm}$, $\triangle GBI$ の面積が $5 \, \text{cm}^2$ のとき、線分DIの長さを求めなさい。 なお、答えに $\sqrt{}$ がふくまれるときは、 $\sqrt{}$ の中をできるだけ小さい自然数にしなさい。

解答

(1) <証明> △ABG と △CEI で、仮定より

$$AB = CE \cdots \bigcirc$$

また

$$\angle GAB = \angle ICE \ (= 90^{\circ}) \ \cdots \ 2$$

∠ABC で

$$\angle ABG = 90^{\circ} - \angle HBE \quad \cdots \quad 3$$

△HEB σ GB \bot EH より

$$\angle BEH = 90^{\circ} - \angle HBE$$

すなわち

$$\angle CEI = 90^{\circ} - \angle HBE \quad \cdots \quad \textcircled{4}$$

3, 4 t b

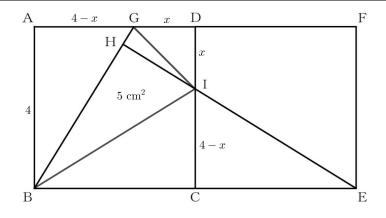
$$\angle ABG = \angle CEI \quad \cdots \quad (5)$$

- ①, ②, ⑤より, 1組の辺とその両端の角がそれぞれ等しいので $\triangle ABG \equiv CEI$.
- (2) $\mathrm{DI}=x$ cm とすると $\mathrm{IC}=(4-x)$ cm. また $\mathrm{DG}=x$ cm, $\mathrm{GA}=(4-x)$ cm. このとき $\triangle \mathrm{ABG}=\frac{1}{2}\times 4\times (4-x)=2(4-x)$ cm², $\triangle \mathrm{DIG}=\frac{1}{2}\times x\times x=\frac{1}{2}x^2$ cm². また $\triangle \mathrm{CBI}\equiv\triangle \mathrm{CEI}$ (証明略) であるから $\triangle \mathrm{CBI}\equiv\triangle \mathrm{ABG}$.

四角形 ABCD の面積は $4 \times 4 = 16 \text{ cm}^2$ であるから

$$\triangle ABG + \triangle CBI + \triangle GBI + \triangle DIG = 四角形 ABCD$$

$$2(4-x) \times 2 + 5 + \frac{1}{2}x^2 = 16$$


$$\frac{1}{2}x^2 - 4x + 5 = 0$$

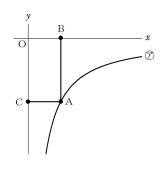
$$x^2 - 8x + 10 = 0$$

$$x = \frac{8 \pm \sqrt{64 - 40}}{2} = \frac{8 \pm \sqrt{24}}{2} = \frac{8 \pm 2\sqrt{6}}{2}$$

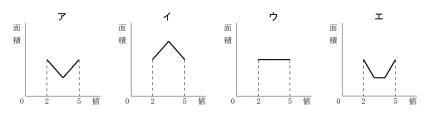
$$= 4 + \sqrt{6}$$

 $0 < x < 4 \$ by $x = (4 - \sqrt{6}) \$ cm.

5


あとの各問いに答えなさい。(8点)

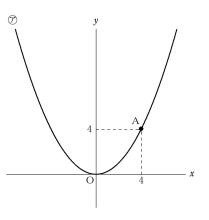
(1) 右の図のように、関数 $y = -\frac{10}{x}$ (x > 0) … ⑦ のグラフ上を動く点 A がある。また、点 A を通り y 軸と平行な直線と x 軸の交点を B とし、点 A を通り x 軸と平行な直線と y 軸の交点を C とする。


このとき、次の各問いに答えなさい。

ただし、原点をOとし、座標軸の1目もりを1cmとする。

① ⑦について、xの値が2から5まで増加するときの変化の割合を求めなさい。

② $2 \le x \le 5$ のとき、点Aのx 座標の値と四角形OCABの面積の関係を表したグラフが、次の \mathbf{r} ~ \mathbf{x} の中に1つある。そのグラフを \mathbf{r} ~ \mathbf{r} から1つ選び、その記号を書きなさい。



(2) 右の図のように、関数 $y = a x^2 \cdots ⑦$ のグラフ上に点Aがあり、点Aの座標が(4, 4)である。

このとき、次の各問いに答えなさい。 ただし、原点をOとする。

- aの値を求めなさい。
- ② \bigcirc のグラフ上に点 $_{A}$ と異なる点である $_{B}$ をとり、直線 $_{A}$ Bと $_{x}$ 軸の交点を $_{C}$ とする。 \bigcirc O B C の面積と \bigcirc O A B の面積の比が $_{2}$: $_{3}$ となるとき、点 $_{B}$ の $_{x}$ 座標を $_{y}$ で 求めなさい。

なお、答えの分母に $\sqrt{}$ がふくまれるときは、分母を有理化しなさい。また、 $\sqrt{}$ の中をできるだけ小さい自然数にしなさい。

解答

(1) ① x=2 のとき $y=-\frac{10}{2}=-5$, x=5 のとき $y=-\frac{10}{5}=-2$. よって変化の割合は

$$\frac{-2 - (-5)}{5 - 2} = \frac{-2 + 5}{3} = \frac{3}{3}$$
$$= 1$$

② 四角形 OCAB の面積を S とすると、y は負の値なので

$$S = x \times (-y) = -xy = -x \times \left(-\frac{10}{x}\right)$$
$$= 10$$

となりSは一定の値をとる. よってグラフは $\mathbf{0}$.

(2) ① $y = ax^2$ のグラフが A(4, 4) を通ることより

$$4 = a \times 4^2$$

$$4 = 16a$$

$$a = \frac{1}{4}$$

② ⑦のグラフ上の点 B の座標を B $\left(b,\,\frac{1}{4}b^2\right)$ とする. 直線 AB の方程式を y=cx+d とすると、A を通ることより

$$4 = 4c + d$$
 ····· (a)

B を通ることより

$$\frac{1}{4}b^2 = bc + d \quad \cdots \quad \text{(b)}$$

a - bより

$$4 = 4c + d$$

$$-) \qquad \frac{1}{4}b^2 = bc + d$$

$$4 - \frac{1}{4}b^2 = (4 - b)c$$

よって

$$\frac{1}{4}(16 - b^2) = (4 - b)c$$

$$\frac{1}{4}(4+b)(4-b) = (4-b)c$$

$$c = \frac{1}{4}(4+b)$$

a より

$$4 = 4\left\{\frac{1}{4}(4+b)\right\} + d$$

$$4 = 4 + b + d$$

$$0 = b + d$$

$$d = -b$$

よって

AB:
$$y = \frac{1}{4}(4+b)x - b$$

となる.

AB の x 軸との交点の x 座標は上式に y=0 を代入して

$$0 = \frac{1}{4}(4+b)x - b$$

$$\frac{1}{4}(4+b)x = b$$

$$(4+b)x = 4b$$

$$x = \frac{4b}{4+b}$$

したがって C の座標は $C\left(\frac{4b}{4+b},0\right)$ となる.

 \triangle OBC の面積と \triangle OAB の面積の比は C と B の x 座標 (= b) との距離と,B の x 座標と A の x 座標 (= 4) との距離の比に等しいから

$$\left(b - \frac{4b}{4+b}\right) : (4-b) = 2 : 3$$

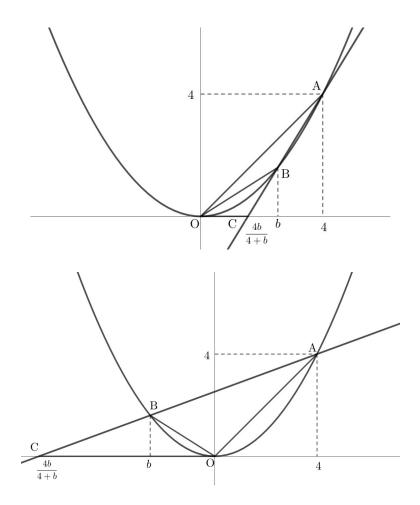
$$2(4-b) = 3\left(b - \frac{4b}{4+b}\right)$$

$$8 - 2b = 3b - \frac{12b}{4+b}$$

$$8 - 5b + \frac{12b}{4+b} = 0$$

$$(4+b)(8-5b) + 12b = 0$$

$$32 - 20b + 8b - 5b^2 + 12b = 0$$


$$-5b^2 + 32 = 0$$

$$5b^2 = 32$$

$$b^2 = \frac{32}{5}$$

$$b = \pm \sqrt{\frac{32}{5}} = \pm \frac{4\sqrt{2}}{\sqrt{5}}$$

$$= \pm \frac{4\sqrt{10}}{5}$$

6

P店では、1個100円のあんまんと、1個140円の肉まんを販売している。ある1日の販売個 数を調べると、あんまんは260個、肉まんは250個であった。また、代金と、その代金を支払っ た人数を調べると下の表のようになった。

このとき、あとの各問いに答えなさい。

ただし、おつりがないように代金を支払ったものとする。(6点)

代金 (円)	100	140	200	240	280	300	340	380	420
支払った人数(人)	40	33	20	50	15	10	(1)	(II)	10

代金420円は, (A) の代金のことであり、その代金を支払った人数が10人である ことから, (B) が販売されたことがわかる。

- ① 上の (A) にあてはまることがらはどれか、次の \mathbf{r} ~ \mathbf{r} から最も適切なものを 1 つ 選び、その記号を書きなさい。
 - **ア**. あんまん 3 個
- **イ**. あんまん 2 個と肉まん 1 個
- **ウ**. あんまん 1 個と肉まん 2 個 **エ**. 肉まん 3 個
- ② 上の (B) にあてはまることがらはどれか、次の \mathbf{r} ~ \mathbf{r} から最も適切なものを1つ 選び、その記号を書きなさい。
 - **ア**. あんまん30個
- **イ**. あんまん20個と肉まん10個
- **ウ**. あんまん10個と肉まん20個 エ. 肉まん30個
- (2) 次の: は,表の(I),(II) にあてはまる数を求めるために,連立方程式に表し たものである。

代金340円を支払った人数をx人、代金380円を支払った人数をy人とすると、

と表すことができる。

- ① 上の (C) , (D) に, それぞれあてはまる適切な数を書き入れなさい。
- ② 表の (I) , (II) に, それぞれあてはまる適切な数を書き入れなさい。

解答

- (1) (1) $420 = 140 \times 3 \pm 5 \pm 1$.

(2) (1)

$$340 = 200 + 140 = 100 \times 2 + 140$$

$$380 = 100 + 280 = 100 + 140 \times 2$$

あんまんが n 個売れたことを $A \times n$ 、肉まんが m 個売れたことを $B \times m$ のように表すと、

	$A \times 40$	$B \times 33$	$A \times 40$	$A \times 50 + B \times 50$	$B \times 30$	$A \times 30$	
代金 (円)	100	140	200	240	280	300	
支払った人数 (人)	40	33	20	50	15	10	

-	$A \times 2x + B \times x$	$A \times y + B \times 2y$	B×30
	340	380	420
	x	y	10

表より

$$A \times 40 + B \times 33 + A \times 40 + A \times 50 + B \times 50 + B \times 30 + A \times 30$$

$$+ A \times 2x + B \times x + A \times y + B \times 2y + B \times 30$$

$$= A(40 + 40 + 50 + 30 + 2x + y) + B(33 + 50 + 30 + x + 2y + 30)$$

$$= A(2x + y + 160) + B(x + 2y + 143)$$

よって連立方程式

$$\begin{cases} 2x + y + 160 = 260 & \dots & \text{(a)} \\ x + 2y + 143 = 250 & \dots & \text{(b)} \end{cases}$$

を立てることができる. ゆえに、(C):160、(D):143.

② a, bより

$$\begin{cases} 2x + y = 100 & \cdots \text{ a'} \\ x + 2y = 107 & \cdots \text{ b'} \end{cases}$$

(a)
$$\times 2 -$$
 (b) \times (b) $4x + 2y = 200$ $-) \quad x + 2y = 107$ $3x = 93$

$$x = 31$$

a より

$$y = -2x + 100 = -62 + 100$$
$$= 38$$

よって、
$$(I)$$
:31、 (II) :38.

(数学)	前期選抜採点基準	Ī
(女人士)	刑判医汉木点至牛	=

「採点基準」で処理できない場合は、各校の統一見解で採点されたい。

(数:	丁 / 円	179175	次休 基準 「採点基準」で処理できない	ゝ場合は,各校の統一見解で採点されたい。
問	題	配点	正 答 例	備考
1	(1)	1点	3 1	
20点	(2)	1点	-x + 9	
	(3)	2点	6√3	
	(4)	2点	x = -3, 2	
	(5)	2点	53, 59	
	(6)	2点	$y = \frac{3}{2} x - 4$	
	(7)	2点	-84	
	(8)	2点	2 7 π cm ²	
	(9)	2点	$\angle x = 1 \ 3 \ 0$ °	
	(10)	2点	$\frac{16}{3}$ cm	
	(11)	2点		 * ①,②のいずれか1つ示せた場合, 1点。 * ①,②,③すべて示せた場合のみ, 2点。 * 数学的な推論をもとに,作図されていればよい。
2	(1)	2点	68 点	
6 点	(2)	2点	5 2 点	
	(3)	2点	ア	
3	(1)	2点	2 5	
4点	(2)	2点	$\frac{1}{1}\frac{1}{5}$	(1877° 64.1)

(裏面へ続く)

6点	(1)			4点	〈証 明〉	①の証明ができて、1点。 ②の証明ができて、1点。 ⑤の証明ができて、1点。 ⑤の証明ができて、1点。 数学的な推論の過程が、的確に表現されていればよい。
	(2)			2点	$4-\sqrt{6}$ cm	
5	(1)		D	2点	1	
8点		(2)	2点	ウ	
	(2)	(D	2点	$a = \frac{1}{4}$	
		(2)	2点	$x = \pm \frac{4\sqrt{10}}{5}$	* すべて正答の場合のみ, 2点。
6	(1)	(D	1 点	x	
6点		(2)	1点	工	
	(2)	1	(C)	1点	1 6 0	
			(D)	1点	1 4 3	
		2	(I)	2点	3 1	* (I), (II)両方正答の場合のみ,
			(II)		3 8	2 点。
合		計		50点		